Assessment Schedule – 2006 Mathematics: Use coordinate geometry methods (90287) Evidence Statement

	Assessment Criteria	No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Use coordinate geometry methods.	1 (a) 1 (b) 1 (c)	$(5,2)$ $y-5 = -3(x-4)$ $3x + y - 17 = 0$ $y+1 = -\frac{1}{2}(x-6)$ $x+2y-4 = 0$	A A	Or equivalent. Or equivalent. Or equivalent. Units not required anywhere in this activity.	Achievement: Two As
MERIT	Solve problems involving coordinate geometry methods.	2(a)	Eqn of line OB: $m = 2$ y = 2x eqn AC: $m = -\frac{1}{4}$ $y = -\frac{1}{4}(x - 6)$ y = 2x point of intersection $(\frac{2}{3}, \frac{4}{3})$	МА	Or equivalent. Must give both coordinates. Correct answer only receives no credit.	Merit: Achievement plus Two Ms OR all Ms.
		2(b)	Grad OA = -1 Eqn line through B with grad 1 is $y = x + 2$. Intersection of $y = -x$ and $y = x + 2$ is $(-1,1)$.	A M	Must have y=x+2 to get Merit.	
		3	Show that two gradients are perpendicular. Grad AB $\frac{2-1}{3-1} = \frac{1}{2}$ Grad BC $\frac{8-2}{0-3} = -2$	A	(both gradients) or (all 3 lengths)	
			Lines AB and BC are perpendicular because gradAB × gradBC =-1	M	Statement required.	

	Solve extended problems involving coordinate geometry methods.	4	Slope of AB $\frac{-5}{k-8}$ Perpendicular grad is $\frac{k-8}{5}$		Must have supporting working and a logical argument.	Excellence: Merit plus E
EXCELLENCE			Midpoint is $\left(\frac{8+k}{2}, \frac{-3}{2}\right)$ Line passes through $(0, -3) \text{ and midpoint which gives:}$ $\frac{-15}{2} + 15 = k\left(\frac{8+k}{2}\right) - 8\left(\frac{8+k}{2}\right)$ $15 = 8k + k^2 - 64 - 8k$	M	(both gradient and mid pt)	
			$79 = k^2$ $k = \pm \sqrt{79}$	E		

Judgement Statement

Mathematics: Use coordinate geometry methods (90287)

Achievement	Achievement with Merit	Achievement with Excellence		
Use coordinate geometry methods.	Solve problems involving coordinate geometry methods.	Solve extended problems involving coordinate geometry methods.		
2 × A	Achievement plus	Merit plus		
	2 × M	1×E		
	OR			
	$3 \times M$			